Voice conversion from/to arbitrary speakers based on tensor representation of speaker space

نویسندگان

  • Daisuke SAITO
  • Keisuke YAMAMOTO
  • Nobuaki MINEMATSU
  • Keikichi HIROSE
چکیده

This paper describes a novel approach to flexible control of speaker characteristics using tensor representation of speaker space. In voice conversion studies, realization of conversion from/to an arbitrary speaker’s voice is one of the important objectives. For this purpose, eigenvoice conversion (EVC) based on an eigenvoice Gaussian mixture model (EV-GMM) was proposed. In the EVC, similarly to speaker recognition approaches, a speaker space is constructed based on GMM supervectors which are high-dimensional vectors derived by concatenating the mean vectors of each of the speaker GMMs. In the speaker space, each speaker is represented by a small number of weight parameters of eigen-supervectors. In this paper, we revisit construction of the speaker space by introducing the tensor analysis of training data set. In our approach, each speaker is represented as a matrix of which the row and the column respectively correspond to the Gaussian component and the dimension of the mean vector, and the speaker space is derived by the tensor analysis of the set of the matrices. Our approach can solve an inherent problem of supervector representation, and it improves the performance of voice conversion. Experimental results of one-to-many voice conversion demonstrate the effectiveness of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Speaker Adaptive Training on Tensor-based Arbitrary Speaker Conversion

This paper introduces speaker adaptive training techniques to tensor-based arbitrary speaker conversion. In voice conversion studies, realization of conversion from/to an arbitrary speaker’s voice is one of the important objectives. For this purpose, eigenvoice conversion (EVC), which is based on an eigenvoice Gaussian mixture model (EV-GMM), was proposed. Although the EVC can effectively const...

متن کامل

Mon.O1d.06 Effects of Speaker Adaptive Training on Tensor-based Arbitrary Speaker Conversion

This paper introduces speaker adaptive training techniques to tensor-based arbitrary speaker conversion. In voice conversion studies, realization of conversion from/to an arbitrary speaker’s voice is one of the important objectives. For this purpose, eigenvoice conversion (EVC), which is based on an eigenvoice Gaussian mixture model (EV-GMM), was proposed. Although the EVC can effectively const...

متن کامل

One-to-Many Voice Conversion Based on Tensor Representation of Speaker Space

This paper describes a novel approach to flexible control of speaker characteristics using tensor representation of speaker space. In voice conversion studies, realization of conversion from/to an arbitrary speaker’s voice is one of the important objectives. For this purpose, eigenvoice conversion (EVC) based on an eigenvoice Gaussian mixture model (EV-GMM) was proposed. In the EVC, similarly t...

متن کامل

طراحی یک روش آموزش ناموازی جدید برای تبدیل گفتار با عملکردی بهتر از آموزش موازی

Introduction: The art of voice mimicking by computers, has with the computer have been one of the most challenging topics of speech processing in recent years. The system of voice conversion has two sides. In one side, the speaker is the source that his or her voice has been changed for mimicking the target speaker’s voice (which is on the other side). Two methods of p...

متن کامل

Doctoral Thesis Techniques for Improving Voice Conversion Based on Eigenvoices

Voice conversion (VC) is a technique for converting a source speaker’s voice into another speaker’s voice without changing linguistic information. As a typical approach to VC, a statistical method based on Gaussian mixture model (GMM) is used widely. A GMM is trained as a conversion model using a parallel data set composed of many utterance-pairs of source and target speakers. Although this fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011